Nucleon Physics at Large x

Z.-E. Meziani

Temple University

Lecture I

HUGS 2006 Summer School Newport News VA

Outline

- Introduction
- Deep inelastic lepton scattering
- Nucleon structure in the Valence quark region
- Moment of structure functions and sum rules
 → Gerasimov-Drell-Hearn and Bjorken Sum Rules
- Quark Gluon correlations Polarizabilities; Spin and color
- Semi-Inclusive scattering and Transverse momentum distributions

Introduction

- A physics goal in our field (of strong interaction) is to understand the structure of hadrons.
- The theory for doing that is well established in its perturbative regime (when the running coupling constant is small) and is called Quantum ChromoDynamics (QCD)
- However, this theory is difficult to solve when the coupling constant is large, a regime known as the confinement regime
- Experiments to investigate the structure of hadrons have helped in the past to test the theory in its perturbative regime and provide for challenges in the confinement regime.

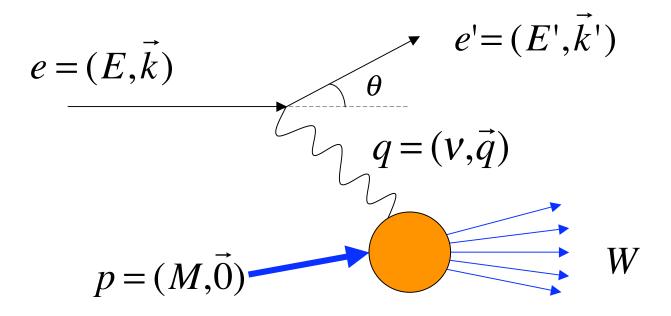
Studying the structure of hadrons

How?

- ⇒ Rutherford tradition of scattering experiments
- ⇒ Using a super high resolution transmission electron (lepton) microscopes

SLAC CERN DESU Jefferson Lab

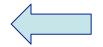
Lepton Scattering



- 4-momentum transfer squared: $Q^2 = -q^2 = 4EE'\sin^2\left(\frac{\theta}{2}\right)$
- Invariant mass squared: $W^2 = M^2 + 2Mv Q^2$
- Ejorken variable: $x = \frac{Q^2}{2Mv}$

Quantum Electrodynamics

Feynman diagrams Matrix element Fermi's Golden Rule

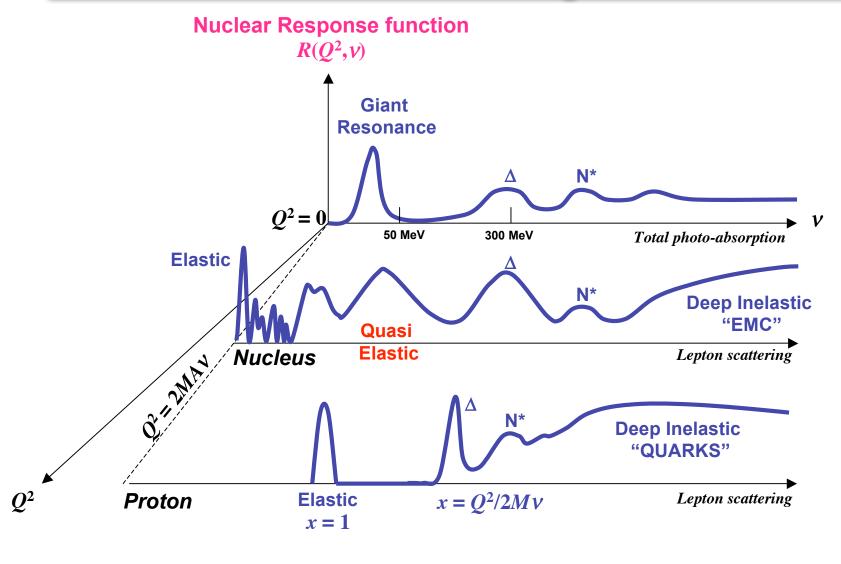


Cross section Transition probability

Example of inclusive electron scattering

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{Q^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

Nucleus/nucleon response to electromagnetic scattering

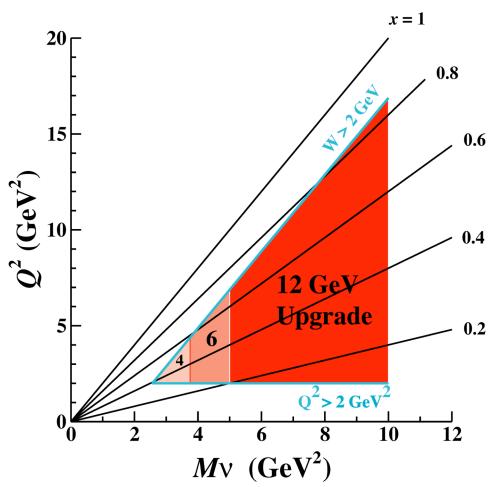


Kinematics Variables and Invariants

Variable	Description	Value in Lab Frame
S	Incident lepton spin four-vector	$\frac{1}{m}(\vec{k} ,0,0,E)$
S	Target nucleon spin four-vector	$m (0, \vec{S})$
k	Incident lepton four-momentum	(E, \vec{k})
<i>k</i> '	Scattered lepton four-momentum	(E', \vec{k}')
P	7arget nucleon four-momentum	$(M, \vec{0})$
q	Virtual photon four-momentum transfer	$q = k - k' = (\nu, \vec{q})$
θ	Scattering angle of lepton	
Invariants	Description	Value in Lab Frame
$Q^2 = -q^2$	Four momentum transfer	$\approx 4EE'\sin^2(\theta/2)$
v	Energy of virtual photon	$P \cdot q/M = E - E'$
x	Bjorken Scaling Variable	$-q \cdot q/2P \cdot q = Q^2/2M\nu$
W^2	Invariant mass of final hadronic state	$(P+q)^2 = M^2 + 2M\nu - Q^2$

Example of Kinematical Reach; Jlab 12 GeV

- Access to very large x (x > 0.4)
 - → Clean region
 - No strange sea effects
 - No explicit hard gluons to be included
- Quark models can be a powerful tool to investigate the structure of the nucleon
- Comparison with lattice QCD is possible for higher moments of structure functions.



Inclusive lepton scattering

The one photon exchange approximation

$$e = (E, \vec{k})$$

$$q = (v, \vec{q})$$

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{Q^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

$$p = (M, \vec{0})$$

$$W$$

Leptonic tensor:

$$L_{\mu\nu} = L_{\mu\nu}^{S} + iL_{\mu\nu}^{A} = 2\left[k_{\mu}k_{\nu}' + k_{\mu}'k_{\nu} - g_{\mu\nu}\left(k \cdot k' - m^{2}\right) + im\epsilon_{\mu\nu\rho\sigma}q^{\rho}s^{\sigma}\right]$$

Hadronic Tensor:

$$W^{\mu\nu} = W_S^{\mu\nu} + iW_A^{\mu\nu} = \frac{1}{2\pi} \int d^4x \ e^{iq\cdot x} < P, S|[J_\mu(x), J_\nu(0)]|P, S>$$

Inclusive lepton scattering (continued)

• The symmetric part of the tensor is written in terms of two spin-independent structure functions $W_1(v,Q^2)$ and $W_2(v,Q^2)$:

$$W_S^{\mu\nu} = -\left(g^{\mu\nu} - \frac{q^\mu q^\nu}{q^2}\right) \hspace{-0.1cm} \underbrace{\hspace{-0.1cm} W_1} \hspace{-0.1cm} + \frac{1}{M^2} \left(P^\mu - \frac{P\cdot q}{q^2} q^\mu\right) \left((P^\nu - \frac{P\cdot q}{q^2} q^\nu) \hspace{-0.1cm} \underbrace{\hspace{-0.1cm} W_2} \right) \hspace{-0.1cm}$$

• The antisymmetric part of the tensor is similarly written in terms of two spin dependent structure functions $G_1(v,Q^2)$ and $G_2(v,Q^2)$

$$W_A^{\mu\nu} = WM\epsilon^{\mu\nu\rho\sigma}q_\rho s_\sigma G_1(\nu,Q^2) + \frac{1}{M}\epsilon^{\mu\nu\rho\sigma}q_\rho \left[(P\cdot q)S_\sigma - (S\cdot q)P_\sigma \right] G_2(\nu,Q^2)$$

• This decomposition is possible because the form of the tensor is constrained to be invariant under parity and time reversal. It must be hermitian: $W^{\mu\nu}=W^{\nu\mu*}$ and satisfy current conservation:

$$q_{\mu}W^{\mu\nu} = q_{\nu}W^{\mu\nu} = 0$$

Inclusive electron scattering cross sections

Unpolarized beam and target

$$\frac{1}{2} \left(\frac{d^2 \sigma^{\downarrow \uparrow}}{dE' d\Omega} + \frac{d^2 \sigma^{\uparrow \uparrow}}{dE' d\Omega} \right) = \frac{4\alpha^2}{Q^2} \left[2W_1(x, Q^2) \sin^2(\theta/2) + W_2(x, Q^2) \cos^2(\theta/2) \right]$$

Longitudinally polarized target and unpolarized beam

$$\left(\frac{d^2\sigma^{\downarrow\uparrow\uparrow}}{dE'd\Omega} + \frac{d^2\sigma^{\uparrow\uparrow\uparrow}}{dE'd\Omega}\right) = \frac{4\alpha^2}{Q^2} \frac{E}{E'} \left[(E + E'\cos\theta) \frac{G_1(x, Q^2)}{G_2(x, Q^2)} \right]$$

Transversely polarized target and unpolarized beam

$$\left(\frac{d^2\sigma^{\downarrow \Rightarrow}}{dE'd\Omega} + \frac{d^2\sigma^{\uparrow \Rightarrow}}{dE'd\Omega}\right) = \frac{4\alpha^2}{Q^2} \frac{E'^2}{E} \sin\theta \left[MG_1(x, Q^2) + 2EG_2(x, Q^2)\right]$$

Virtual Photoabsorption Cross Section

$$\begin{split} \sigma_{\pm 1,0} &= \frac{4\pi^2\alpha}{K} \epsilon_{\pm 1,0}^{\mu*} W_{\mu\nu} \epsilon_{\pm 1,0}^{\nu} \\ K &= \nu - Q^2/2M \\ \epsilon_{\pm 1} &= \frac{1}{\sqrt{2}} (0,1,\pm i,0) \qquad \text{Polarization vectors} \\ \epsilon_0 &= \frac{1}{\sqrt{Q^2}} (\sqrt{Q^2 + \nu^2},0,0,\nu) \end{split}$$

$$\gamma^* + N \rightarrow \gamma^* + N$$

Compton scattering amplitude

$$\operatorname{Im} T_{[1,\frac{1}{2}\to 1,\frac{1}{2}]} \propto \sigma_{3/2} = \frac{4\pi^2\alpha}{K} [W_1 + M\nu G_1 - Q^2 G_2]$$

$$\operatorname{Im} T_{[1,-\frac{1}{2}\to 1,-\frac{1}{2}]} \propto \sigma_{1/2} = \frac{4\pi^2\alpha}{K} [W_1 - M\nu G_1 + Q^2 G_2]$$

$$\operatorname{Im} T_{[0,\frac{1}{2}\to 0,\frac{1}{2}]} \propto \sigma_L = \frac{4\pi^2\alpha}{K} [W_2 (1+\nu^2/Q^2) - W_1]$$

$$\operatorname{Im} T_{0,-\frac{1}{2}\to 1,\frac{1}{2}} \propto \sigma_{TL} = \frac{4\pi^2\alpha}{K} \sqrt{Q^2} [MG_1 + \nu G_2]$$

Virtual Photoabsorption Cross Section

$$\sigma_T \equiv \frac{1}{2}(\sigma_{1/2} + \sigma_{3/2}) = \frac{4\pi^2 \alpha}{K} W_1(\nu, Q^2)$$

$$\sigma_L \equiv \sigma_0 = \frac{4\pi^2 \alpha}{K} \left[\left(1 + \frac{\nu^2}{Q^2} \right) W_2(\nu, Q^2) - W_1(\nu, Q^2) \right]$$

The unpolarized differential deep inelastic cross section can be expressed in terms of the virtual photoabsorption cross sections

$$\frac{d\sigma}{dE'd\Omega}|_{lab} = \Gamma\left(\sigma_T + \epsilon\sigma_L\right)$$

$$\Gamma = \frac{\alpha K}{2\pi^2 Q^2} \frac{E'}{E} \frac{1}{1 - \epsilon} \qquad \epsilon = \left(1 + 2\frac{\nu^2 + Q^2}{Q^2} \tan^2 \frac{\theta}{2}\right)^{-1}$$

The nucleon as a laboratory for QCD

• How to get Information about the nucleon structure?

Nucleon static properties are well known, like

- → charge
- → mass
- → magnetic moment

but it in terms of the constituents, quarks and gluons

- Elastic scattering
 - → Charge distribution
 - Magnetization distribution
- Deep inelastic scattering
 - → Momentum distribution among the different constituents
 - → Charge distribution among the different constituents
 - → Spin distribution among the different constituents

Proton

Mass:

 $1.672\ 621\ 71(29) \times 10^{-27}\ kg$ 938.272\ 029(80)\ \text{MeV/c}^2

Electric Charge:

 $1.602\ 176\ 53(14) \times 10^{-19}\ C$

Diameter:

about 1.5×10^{-15} m

Spin:

1/2

Quark Composition:

1 down, 2 up

Scaling of structure functions

First measurements of the unpolarized cross section show that at large Q² the cross section was independent of Q²

At large Q^2 and large v but finite x the structure functions depend only one variable, x

$$MW_1(\nu, Q^2) \rightarrow F_1(x)$$

$$\nu W_2(\nu, Q^2) \rightarrow F_2(x)$$

$$M^2 \nu G_1(\nu, Q^2) \rightarrow g_1(x)$$

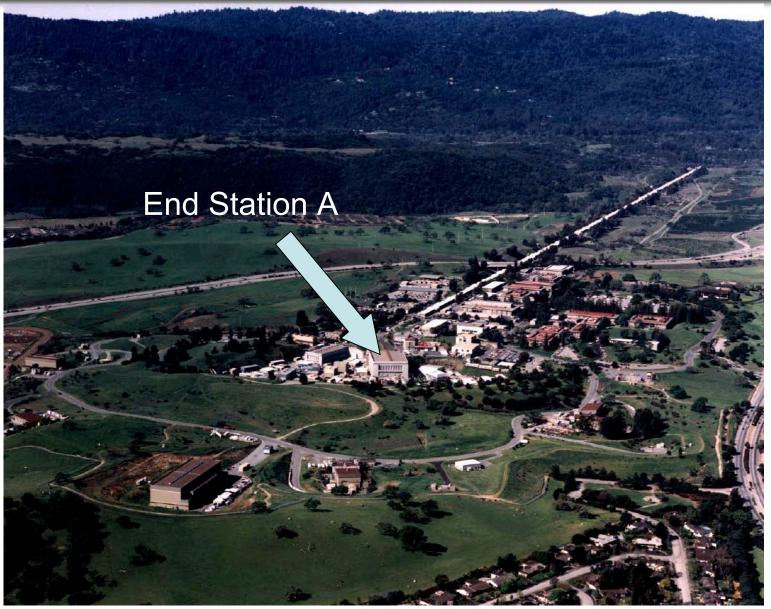
$$M\nu^2 G_2(x, Q^2) \rightarrow g_2(x)$$

$$x = \frac{Q^2}{2M\nu}$$

The typical notation found in many papers is to write the cross sections in terms of

$$F_1(x, Q^2), F_2(x, Q^2), g_1(x, Q^2)$$
 and $g_2(x, Q^2)$

SLAC

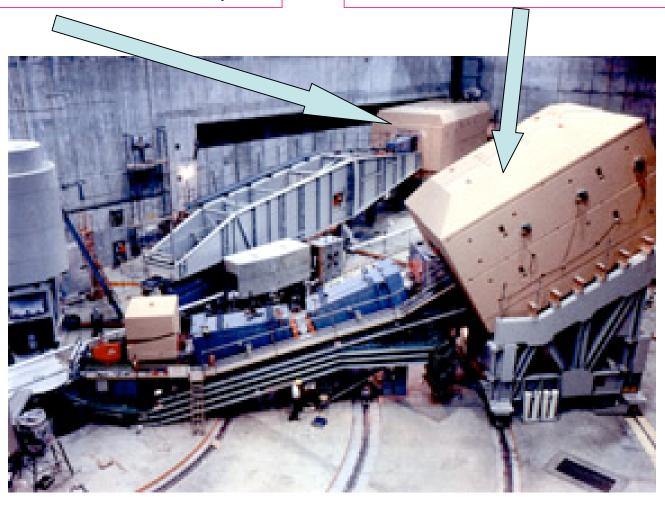


June 16, 2006

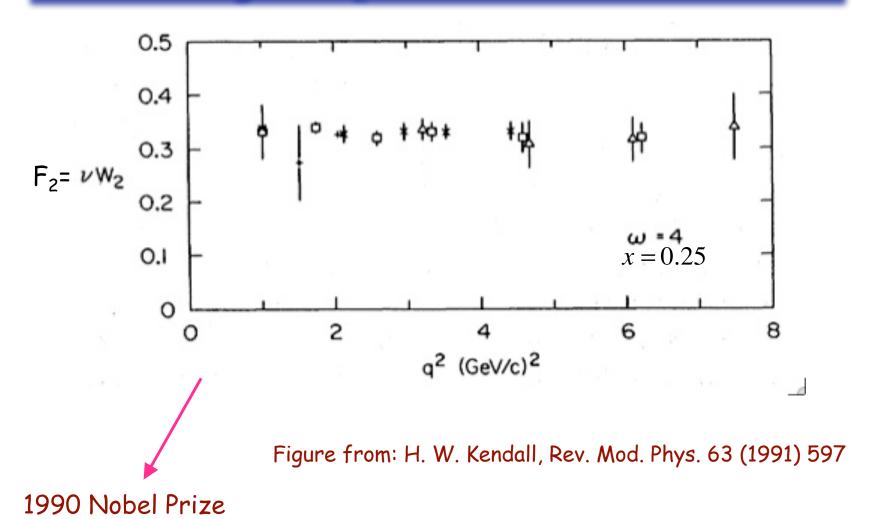
SLAC End Station A Spectrometers

20 GeV maximum momentum spect.

8 GeV maximum momentum spect.



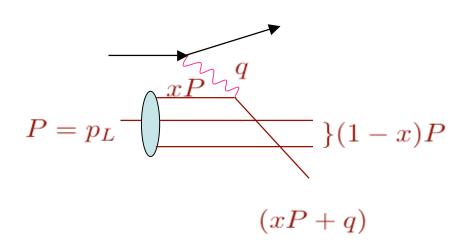
Scaling of F₂ Structure Function



J. I. Friedman, H. W. Kendall and R. E. Taylor

Quark-Parton Model

Bjorken, Feynman and Paschos



The nucleon is made out of non-interacting point like particles called partons

The photon quark scattering is elastic scattering

	Proton	Parton	\\/\bara \tau is the freetien of mucleon
	\downarrow	\downarrow	Where x is the fraction of nucleon momentum carried by the struck quark
Energy	${ m E}$	xE	·
Momentum	p_L	xp_L	
	$p_T = 0$	$p_T = 0$	
Mass	\mathbf{M}	$m = (x^2 E^2)$	$(-x^2p_L^2)^{1/2} = xM$

Quark Parton Model

$$(xP+q)^2 = m^2 \Rightarrow x^2P^2 + 2xP \cdot q + q^2 = m^2$$

At large q^2 assume $q^2 \gg x^2 P^2$ and $q^2 \gg m^2$ $2xP \cdot q + q^2 \simeq 0$ thus

solving for x in the Lab frame we obtain

$$2xM \cdot \nu + q^2 = 0 \Rightarrow x = \frac{Q^2}{2M\nu}$$

Elastic scattering off a quark lead to $\ q^2=2m
u$

Then

$$x = \frac{m}{M}$$

 $x=rac{m}{M}$ Fraction of nucleon mass carried by struck quark !?

A scattering picture of the proton

Quark & Leptons: An Introductory Course in Modern Particle Physics, Francis Halzen and Alan Martin One quark Three valence quarks \mathcal{X} 1/3 Three bound valence quarks \mathcal{X} 1/3 Small *x* Three bound valence Sea quarks+ slow debris Valence

June 16, 2006

HUGS 2006, Newport News, VA

1/3

Structure functions in the parton model

In the infinite-momentum frame:

- > no time for interactions between partons
- \succ Partons are point-like non-interacting particles: $\sigma_{\text{Nucleon}} = \Sigma_i \sigma_i$

$$F_1(x) = \frac{1}{2} \sum_{i} e_i^2 [q_i^{\uparrow}(x) + q_i^{\downarrow}(x)]$$

$$F_2(x) = \sum_{i} e_i^2 x [q_i^{\uparrow}(x) + q_i^{\downarrow}(x)]$$

$$2xF_1(x) = F_2(x) = \sum_i e_i^2 x q_i(x)$$
Callan-Gross relation $\frac{\sigma_L}{\sigma_T} \to 0$
It is a consequence of quarks having a spin 1/2

$$g_1(x) = \frac{1}{2} \sum_{i} e_i^2 [q_i^{\uparrow}(x) - q_i^{\downarrow}(x)]$$

 $g_2(x)$ has no simple partonic interpretation. It involves quark-gluon interactions

Useful relations among quark distributions

$$\frac{1}{x}F_2^p(x) = \left(\frac{2}{3}\right)^2 \left[u^p(x) + \bar{u}^p(x)\right] + \left(\frac{1}{3}\right)^2 \left[d^p(x) + \bar{d}^p(x)\right]
+ \left(\frac{1}{3}\right)^2 \left[s^p(x) + \bar{s}^p(x)\right]
\frac{1}{x}F_2^n(x) = \left(\frac{2}{3}\right)^2 \left[u^n(x) + \bar{u}^n(x)\right] + \left(\frac{1}{3}\right)^2 \left[d^n(x) + \bar{d}^n(x)\right]
+ \left(\frac{1}{3}\right)^2 \left[s^n(x) + \bar{s}^n(x)\right]$$

The proton and neutron are members of an isopin doublet therefore there are as many u quarks in the proton as d quarks in the neutron

$$u^{p}(x) = d^{n}(x) \equiv u(x)$$
$$d^{p}(x) = u^{n}(x) \equiv d(x)$$
$$s^{p}(x) = s^{n}(x) \equiv s(x)$$

Nucleon quark distributions

Kuti and Weisskopf or Landshoff and Polkinghorne 1971

Separate "valence" and "sea"

$$u(x) = u_v(x) + u_s(x)$$
$$d(x) = d_v(x) + d_s(x)$$

The "sea" is common to all quark flavors

$$u_s(x) = \bar{u}_s(x) = d_s(x) = \bar{d}_s(x) = s_s(x) = \bar{s}_s(x) = S(x)$$

If we rewrite F_2 for the proton and neutron using the new relations we obtain

$$\frac{1}{x}F_2^p(x) = \frac{1}{9}\left[4u_v(x) + d_v(x)\right] + \frac{4}{3}S(x)$$

$$\frac{1}{x}F_2^n(x) = \frac{1}{9}\left[u_v(x) + 4d_v(x)\right] + \frac{4}{3}S(x)$$

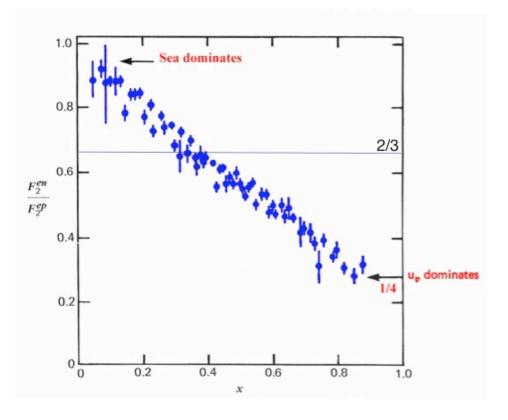
$$\frac{F_2^n(x)}{F_2^p(x)} = \frac{u_v + 4d_v + 12S}{4u_v + d_v + 12S}$$

Towards the nucleonquark distributions

- When probing the small x momenta of quarks we expect that the struck quark with small x is part of the "sea pairs".
 - → In this case we expect the neutron or proton to respond similarly.
 - → This is confirmed by experiment
- When probing the large x momenta of quarks we expect the valence struck quark to dominate leaving little momentum to sea pairs

$$\frac{F_2^n(x)}{F_2^p(x)} \xrightarrow{x \to 1} \frac{u_v + 4d_v}{4u_v + d_v}$$

$$\frac{F_2^n(x)}{F_2^p(x)} \xrightarrow{x \to 0} 1$$

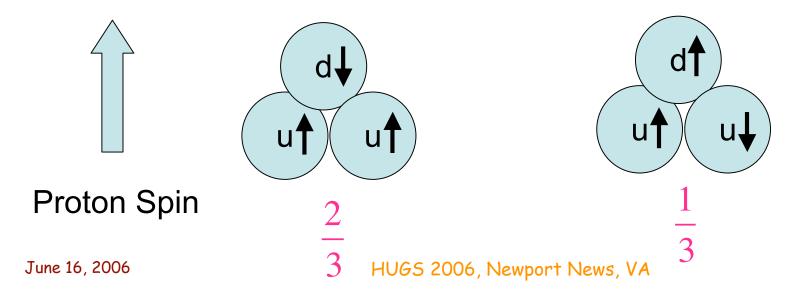


Constituent quark Model

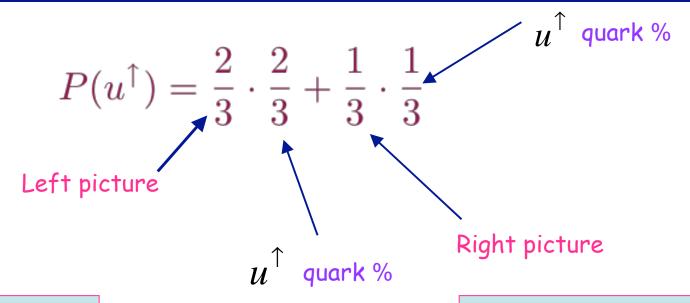
Static symmetric wave function: SU(6)=SU(3)⊗SU(2)

$$\begin{split} \left| p^\uparrow \right> &= & \sqrt{\frac{1}{18}} \quad \left[-2 \left| u^\uparrow u^\uparrow d^\downarrow \right> - 2 \left| u^\uparrow d^\downarrow u^\uparrow \right> - 2 \left| d^\downarrow u^\uparrow u^\uparrow \right> \right. \\ & + & \left| u^\uparrow u^\downarrow d^\uparrow \right> + \left| u^\uparrow d^\uparrow u^\downarrow \right> + \left| d^\uparrow u^\uparrow u^\downarrow \right> \\ & + & \left| u^\downarrow u^\uparrow d^\uparrow \right> + \left| u^\downarrow d^\uparrow u^\uparrow \right> + \left| d^\uparrow u^\downarrow u^\uparrow \right> \right] \end{split}$$

Square it...



Constituent quark model



$$P(u^{\uparrow}) = \frac{5}{9}$$

$$P(d^{\uparrow}) = \frac{1}{9}$$

$$P(u^{\downarrow}) = \frac{1}{9}$$

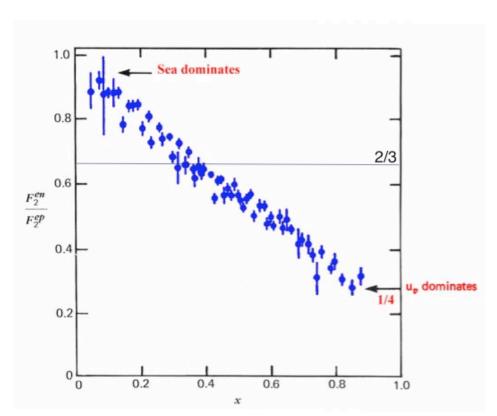
$$P(d^{\downarrow}) = \frac{2}{9}$$

SU(6) symmetry breaking

Plugging the previous numbers we obtain

$$\frac{F_2^n(x)}{F_2^p(x)} \xrightarrow{x \to 1} \frac{u_v + 4d_v}{4u_v + d_v}$$

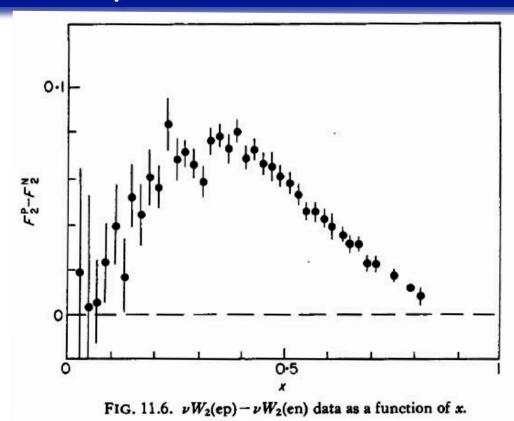
$$\frac{F_2^n(x)}{F_2^p(x)} \xrightarrow{x \to 1} \frac{u_v + 4d_v}{4u_v + d_v} \qquad \qquad \frac{F_2^n}{F_2^P} = \frac{2/3 + 4 \times 1/3}{4 \times 2/3 + 1/3} = \frac{2}{3}$$



- Clearly SU(6) symmetry is broken
- Writing a wavefunction that would favor the dominance of the up quark goes towards reproducing the experimental data

$$\frac{F_2^n(x)}{F_2^p(x)} \xrightarrow{x \to 1} \frac{1}{4}$$

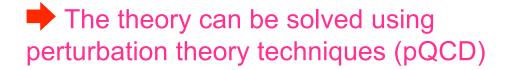
F2 proton - F2 neutron



$$F_2^p(x) - F_2^n(x) = \frac{x}{3} [u_v(x) - d_v(x)]$$

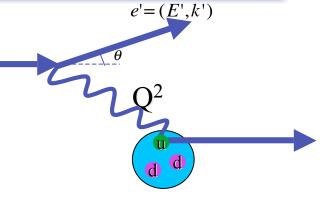
Deep Inelastic Scattering in QCD

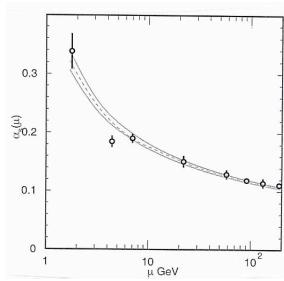
The strong running coupling constant $e = (E, \vec{k})$ becomes small at large Q²



Scaling is predicted but something more too, evolution of the structure functions thus violation of scaling at finite Q²

High Q^2 and W>2GeV: fine resolution \rightarrow we see partons



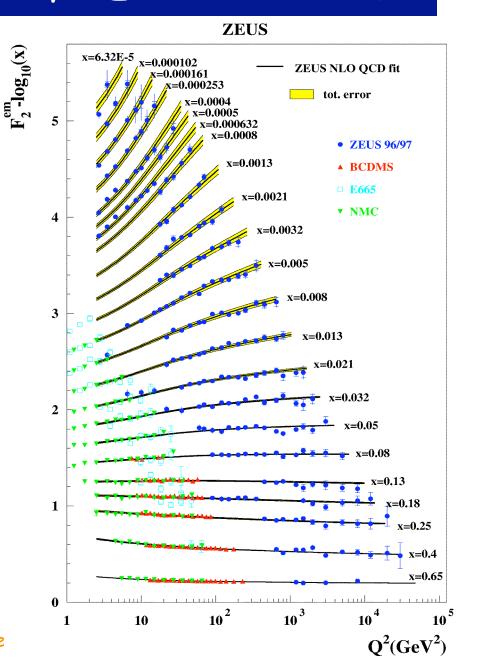


2004 Nobel Prize

D. J. Gross, H. D. Politzer and F. Wilczek

Measurements at HERA; ZEUS detector

- We observe scaling in the large x range ($x\sim0.1$ to 0.6)
- There are also clear violations of scaling
- Violations are well understood with perturbative QCD (pQCD)
- Measurements on a hydrogen (proton) and deuterium targets (neutron) help determine the quark distribution functions

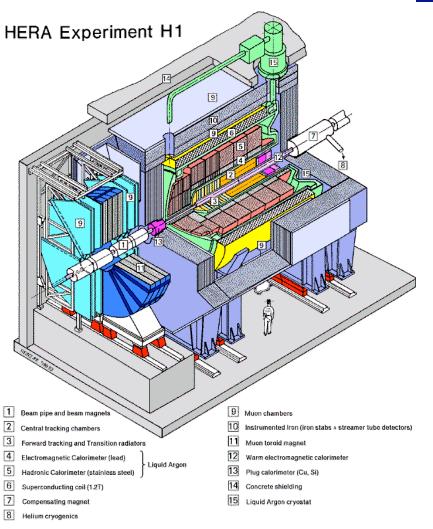


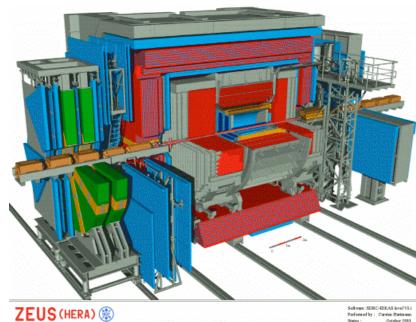
A bird's eye view of the DESY site and the surroundings in Hamburg

● HERA, with its circumference of 6.3 km is the biggest accelerator at DESY and it is housed in a tunnel with an inner diameter of 5.2 m which is situated about 10-20 m underground

 920 GeV protons collide with electrons or positrons with an energy of 27.5 GeV thereby providing a way to study the inner structure of protons.

The H1 and ZEUS detectors at DESY





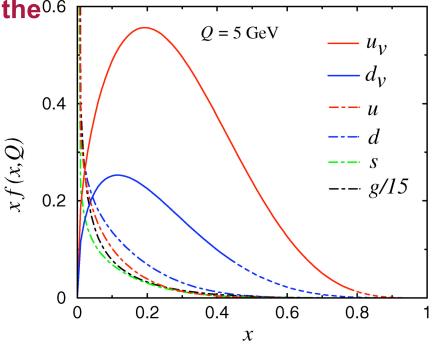
PDFs in the valence quark region

Understand the nucleon structure in the^{0.6} valence quark region

- What is required?
- Complete knowledge of parton distribution functions (PDFs).

At Large x

- large x exposes valence quarks
 free of sea effects
- no explicit hard gluons to be included
- x->1 behavior sensitive test of spin-flavor symmetry breaking
- important for higher moments of PDFs - compare with lattice QCD
- intimately related with resonances,
 quark-hadron duality
 HUGS 2006, Newport News, VA



$$M_n(Q^2) = \int_0^1 dx \ x^{n-1} \ g_1(x, Q^2), \qquad n = 1, 3, 5...$$

Unpolarized Neutron to Proton ratio

•In the large x region (x>0.5) the ratio F_2^n/F_2^p is not well determined due to the lack of free neutron targets

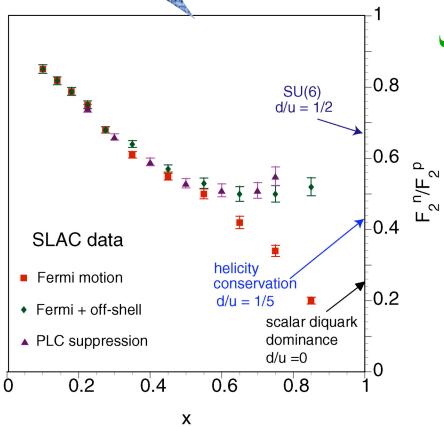
·he ined → de

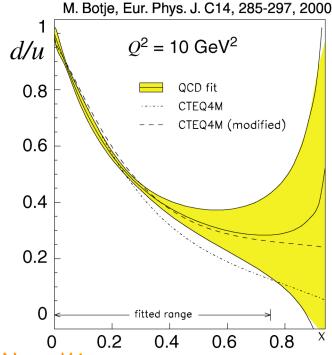
determine valence d quark momentum distribution

rextract helicity dependent quark distributions through inclusive DIS

high x and Q² background in high energy particle searches.

construct moments of structure functions





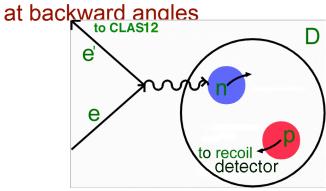
June 16, 2006

HUGS 2006, Newport News, VA

Unpolarized Neutron to Proton ratio

Spectator tagging

 Nearly free neutron target by tagging low-momentum proton from deuteron at backward angles



- Small p (70-100 MeV/c)
 - Minimize on-shell extrapolation (neutron only 7 MeV off-shell)
- Backward angles (θ_{pq}> 110°)
 - Minimize final state interactions

DIS from A=3 nuclei

- Mirror symmetry of A=3 nuclei
 - ightharpoonup Extract F_2^n/F_2^p from ratio of $^3{\rm He}/^3{\rm He}$ structure functions $F_2^n = 2\mathcal{R} F_2^{^3He}/F_2^{^3H}$

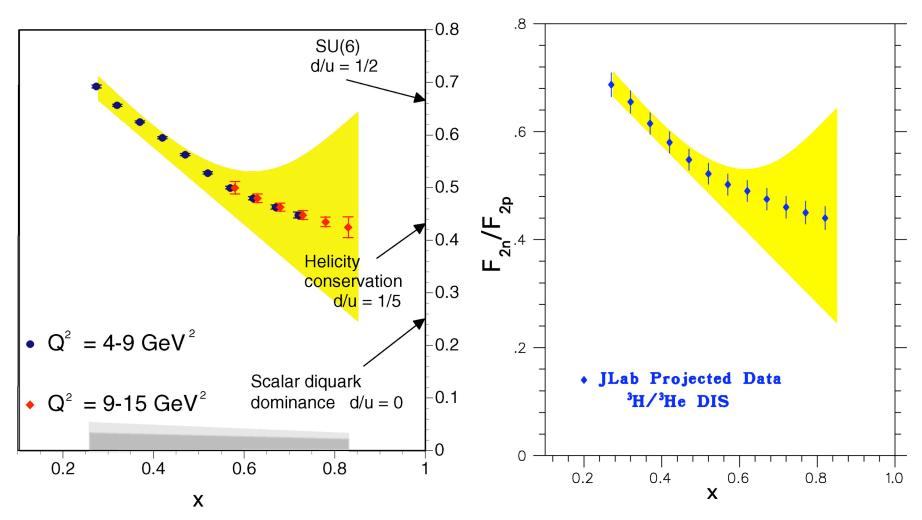
$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

- Super ratio \mathcal{R} = ratio of "EMC ratios" for ³He and ³H

 calculated to within 1%
- Most systematic and theoretical uncertainties cancel

Unpolarized Neutron to Proton Ratio

Hall C 11 GeV with HMS

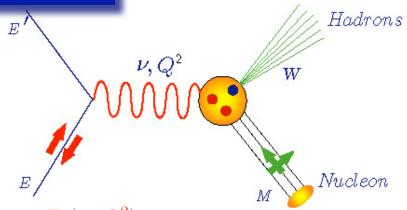


June 16, 2006

HUGS 2006, Newport News, VA

Inclusive DIS

- Unpolarized structure functions $F_1(x,Q^2)$ and $F_2(x,Q^2)$
 - Proton & neutron measurements provide d/u distributions ratio



Polarized structure functions

$$g_1(x,Q^2)$$
 and $g_2(x,Q^2)$

Proton & neutron measurements combined with d/u provide the spinflavor distributions Δu/u & Δd/d

$$Q^2$$
: Four-momentum transfer

$$x: \mathsf{Bjorken}$$
 variable

$$u$$
 : Energy transfer

$$W$$
: Final state hadrons mass

$$\frac{d^2\sigma}{dE'd\Omega}(\downarrow\uparrow\uparrow -\uparrow\uparrow\uparrow) = \frac{4\alpha^2}{MQ^2} \frac{E'}{\nu E} \left[(E + E'\cos\theta) \frac{g_1(x, Q^2)}{\rho} - \frac{Q^2}{\nu} \frac{g_2(x, Q^2)}{\rho} \right]$$

$$\mathsf{T} \qquad \frac{d^2\sigma}{dE'd\Omega}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^2 \sin\theta}{MQ^2} \frac{E'^2}{\nu^2 E} \left[\nu g_1(x, Q^2) + 2E g_2(x, Q^2) \right]$$

June 16, 2006

HUGS 2006, Newport News, VA

Virtual photon-nucleon asymmetries

Longitudinal

$$\frac{\sigma^{\downarrow\uparrow\uparrow} - \sigma^{\uparrow\uparrow\uparrow}}{\sigma^{\downarrow\uparrow\uparrow} + \sigma^{\uparrow\uparrow\uparrow}} = A_{\parallel} = D(A_1 + \eta A_2)$$

Transverse
$$\frac{\sigma^{\downarrow \Leftarrow} - \sigma^{\uparrow \Leftarrow}}{\sigma^{\downarrow \Leftarrow} + \sigma^{\uparrow \Leftarrow}} = A_{\perp} = d(A_1 - \xi A_2)$$

 D, d, η and ξ are kinematic factors

$$D$$
 depends on $R(x,Q^2)=\sigma_L/\sigma_T$

$$A_1 = \frac{g_1(x, Q^2) - \gamma^2 g_2(x, Q^2)}{F_1(x, Q^2)}$$

$$A_2 = \frac{\gamma[g_1(x,Q^2) + g_2(x,Q^2)]}{F_1(x,Q^2)}$$

where
$$\gamma = \sqrt{Q^2}/\nu$$

Positivity constraints

$$|A_1| \le 1$$
 and $|A_2| \le \sqrt{R(1+A_1)/2}$

In the quark-parton model:

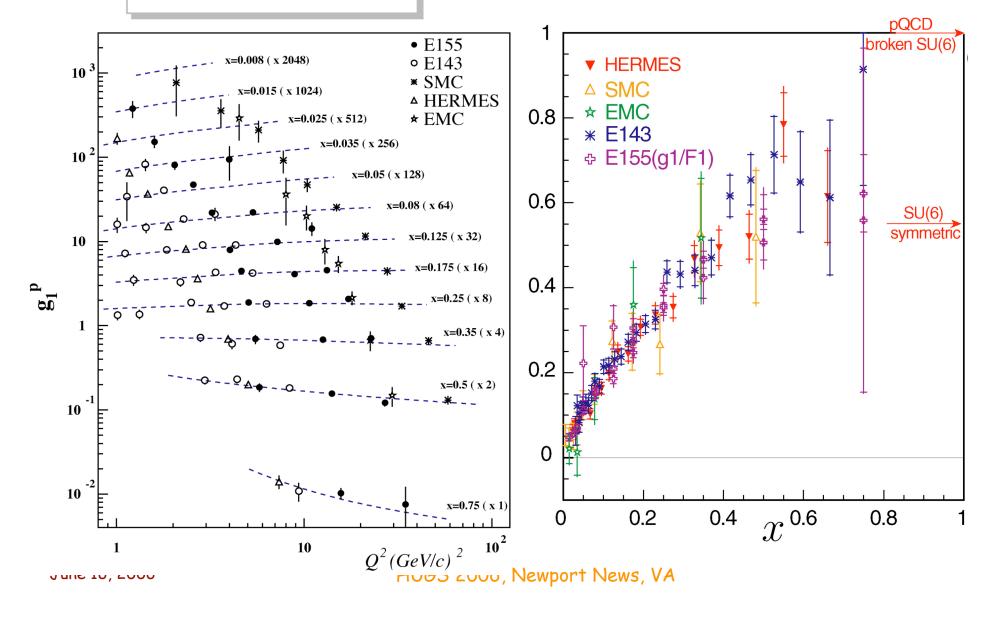
$$F_{1}(x, Q^{2}) = \frac{1}{2} \sum_{f} e_{f}^{2} q_{f}(x, Q^{2}) \qquad g_{1}(x, Q^{2}) = \frac{1}{2} \sum_{f} e_{f}^{2} \Delta q_{f}(x, Q^{2})$$

$$q_{f}(x) = q_{f}^{\uparrow}(x) + q_{f}^{\downarrow}(x) \qquad \Delta q_{f}(x) = q_{f}^{\uparrow}(x) - q_{f}^{\downarrow}(x)$$

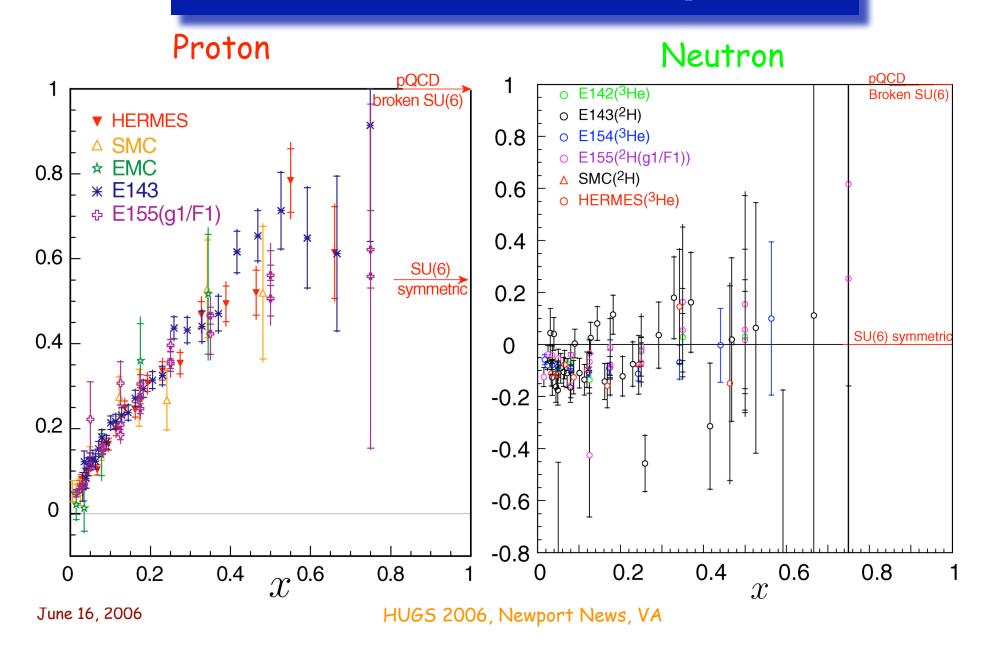
 $q_f(x)$ quark momentum distributions of flavor fparallel (antiparallel) to the nucleon spin

Examples of existing data and physics issues

World data on g_1^p



World data for A₁



SU(6) Breaking mechanism

Relativistic Constituent Quark Model (CQM)

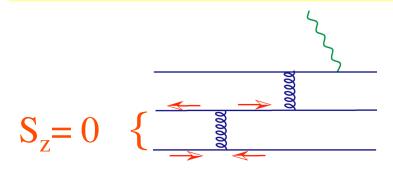
Close, Thomas, Isgur

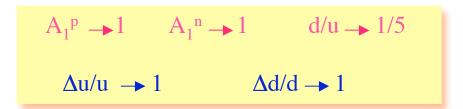
- Introduce hyperfine $\vec{S}_i \cdot \vec{S}_j \delta^3(\vec{r}_{ij})$ interaction (N Δ mass splitting, etc...)
- \rightarrow Constrain d/u using R^{np} data : d(x)/u(x) = (4R^{np} -1)/(4- R^{np})

$$|n\uparrow\rangle = \frac{1}{\sqrt{2}}|d\uparrow(du)_{000}\rangle \begin{array}{c} \text{Dominant component} \\ 0.8 \\ + \frac{1}{\sqrt{18}}|d\uparrow(du)_{110}\rangle - \frac{1}{3}|d\downarrow(du)_{111}\rangle_{0.6} \\ - \frac{1}{3}|u\uparrow(dd)_{110}\rangle + \frac{\sqrt{2}}{3}|u\downarrow(dd)_{111}\rangle_{0.4} \\ As \times -->1 \\ 0.2 \\ \Delta u/u \rightarrow 1 \qquad \Delta d/d \rightarrow -1/3 \\ \end{array}$$

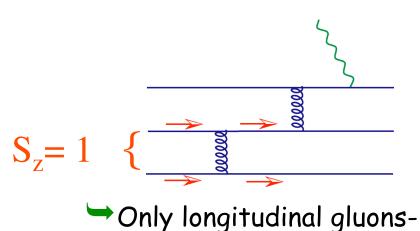
Perturbative gluon exchange

Farrar & Jackson, P.R.L. <u>35</u> (1975) 1416; Brodsky et al., Nuc. Phys. <u>B441</u> (1995) 197.





Can exchange transverse gluon-flipping both spins



cannot flip spins

0.8 0.6 0.4 0.2 (LSS)_{BBS} BBS 0 0.2 0.2 0.2 0.3 0.4 0.6 0.8

Polarized quarks as x-->1

• SU(6) symmetry:

→
$$A_1^p = 5/9$$
 $A_1^n = 0$ $d/u=1/2$
→ $\Delta u/u = 2/3$ $\Delta d/d = -1/3$

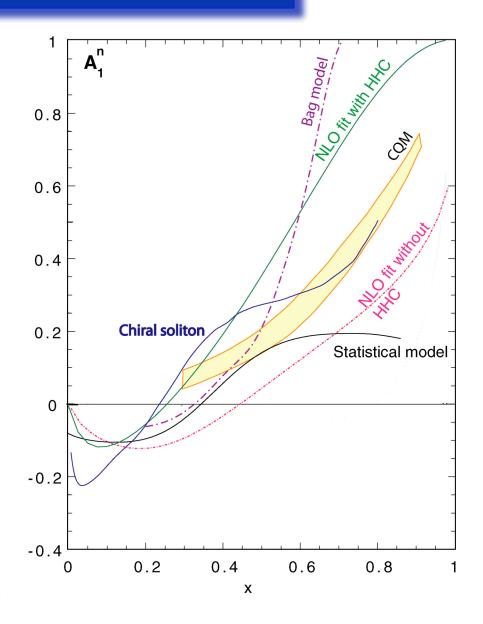
 Broken SU(6) via scalar diquark dominance

Broken SU(6) via helicity conservation

$$\rightarrow A_1^p \rightarrow 1 \qquad A_1^n \rightarrow 1 \qquad d/u \rightarrow 1/5$$

$$\rightarrow \Delta u/u \rightarrow 1 \qquad \Delta d/d \rightarrow 1$$

Note that $\Delta q/q$ as x--> 1 is more sensitive to spin-flavor symmetry breaking effects than A_1



Tools: Hall A at Jefferson Lab

Polarized beam

Energy: 0.86-5.1 GeV

Polarization: > 70%

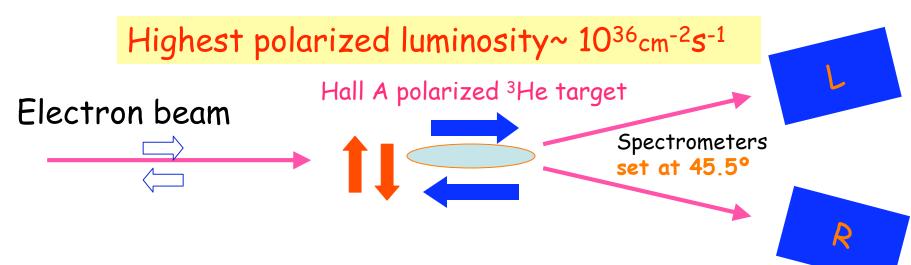
Average Current: 5 to 15 μ A

Hall A polarized ³He target

Pressure ~ 10 atm

Polarization average: 35%

Length: 40 cm with 100 μ m thickness

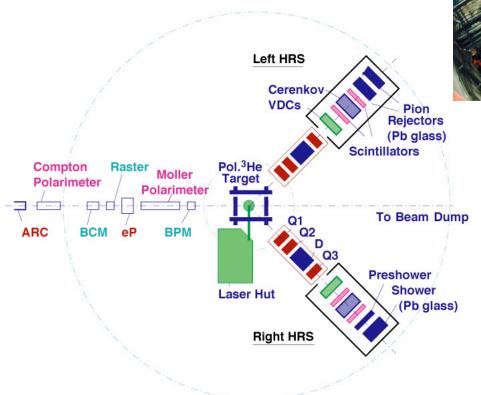


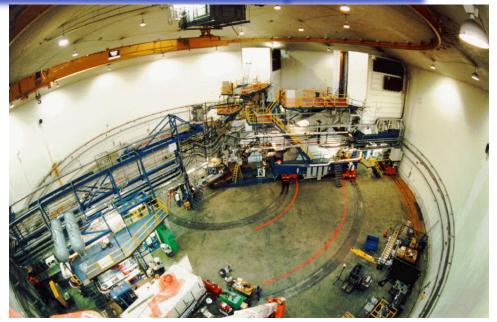
- Measurement of double spin asymmetries or dependent ³He cross sections
- Extract g₁ spin structure functions of ³He and neutron
- Extract moments of spin structure functions of the neutron.

Jlab Hall A Experimental Setup

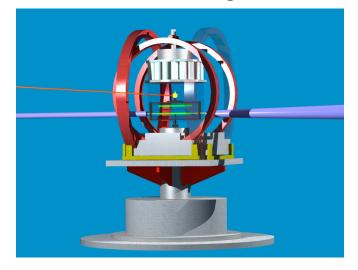
75-80% polarized beam at 15μ A

35-40% polarized target in beam



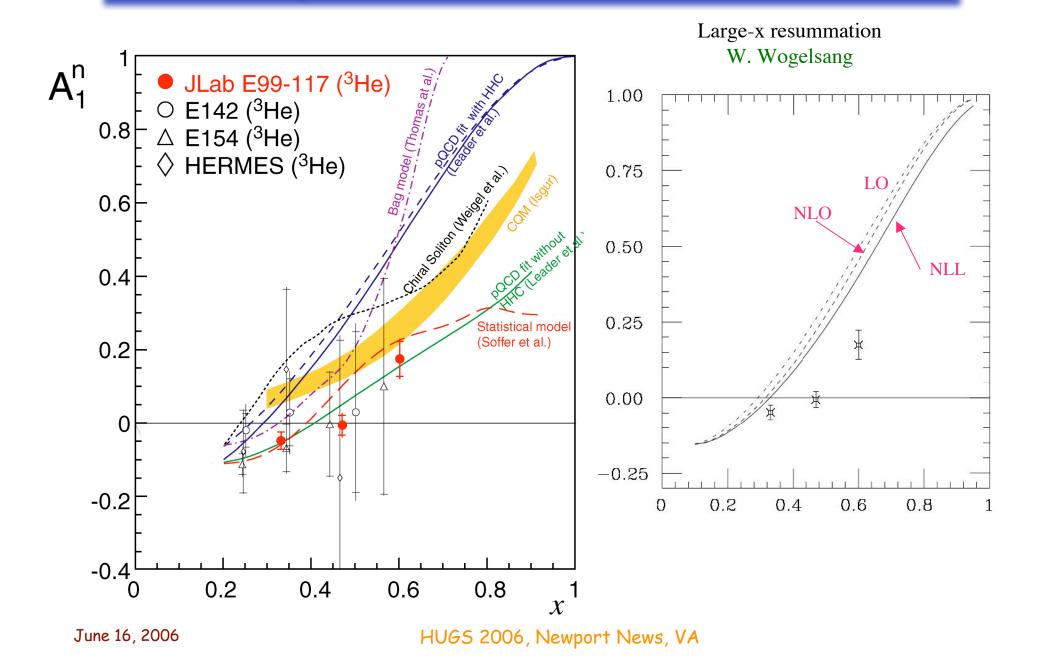


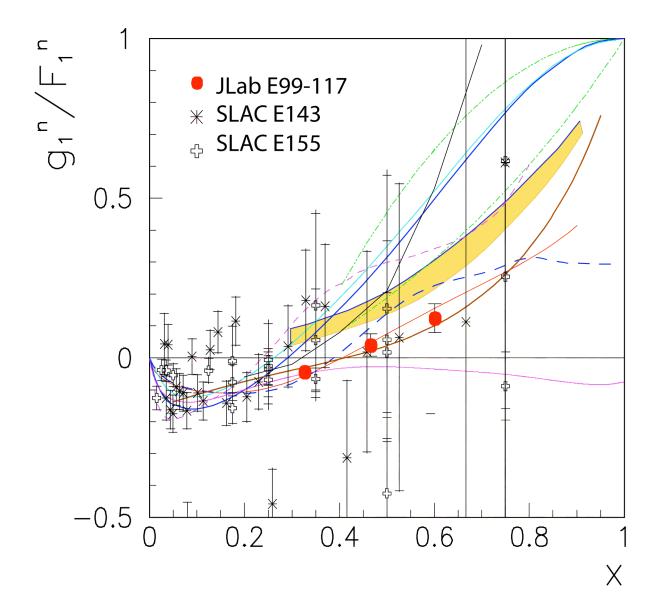
Polarized target



June 16, 2006

A₁ⁿ in DIS from ³He in Hall A



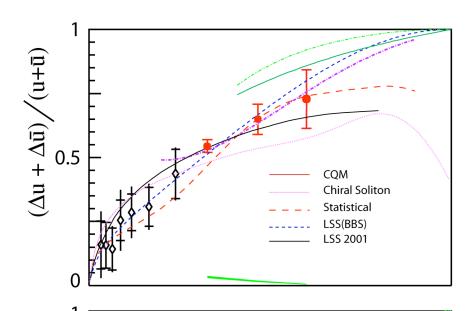


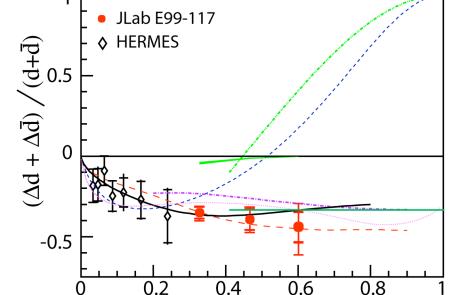
Flavor Decomposition of PDFs

$$\frac{\Delta u + \Delta \overline{u}}{u} = \frac{4}{15} \frac{g_1^p}{F_1^p} (4 + R^{du}) - \frac{1}{15} \frac{g_1^n}{F_1^n} (1 + 4R^{du})$$

$$\frac{\Delta d + \Delta \overline{d}}{d} = \frac{4}{15} \frac{g_1^n}{F_1^n} (4 + \frac{1}{R^{du}}) - \frac{1}{15} \frac{g_1^p}{F_1^p} (1 + 4\frac{1}{R^{du}})$$

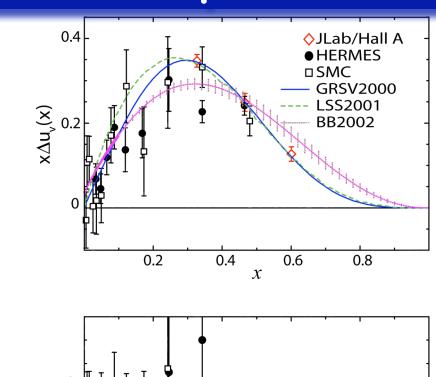
$$R^{du} = \frac{d + \overline{d}}{u + \overline{u}}$$

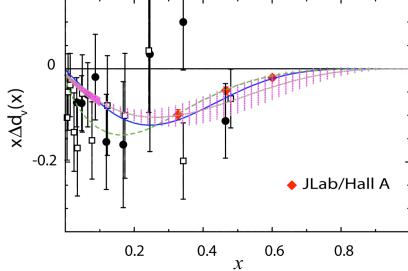




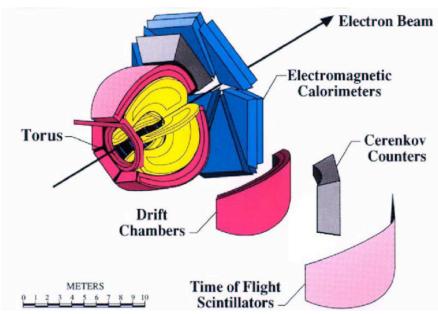
X. Zheng et al. PRL 92, 012004 (2004) and PRC70, 065270 (2004)

Flavor Decomposition: PDFs





Hall B Experimental Setup



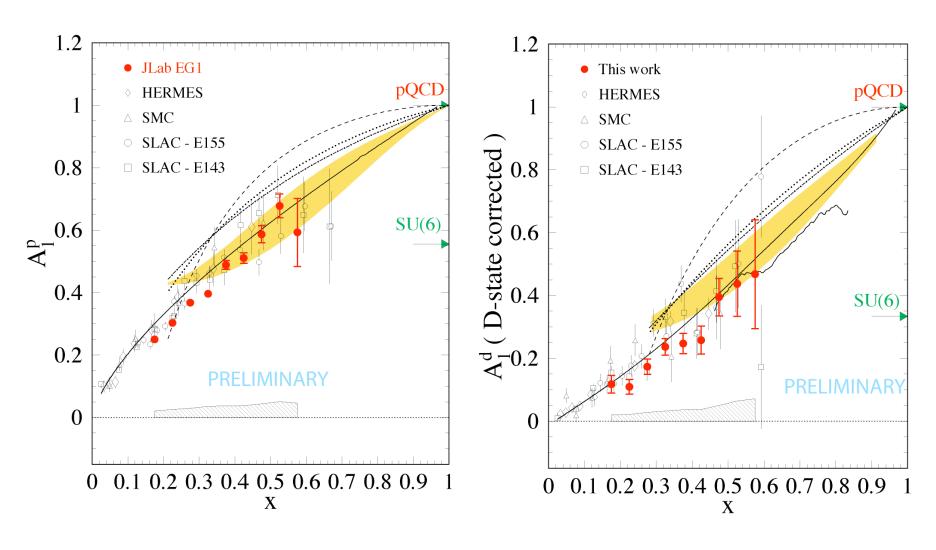
- Large kinematical coverage
- detection of charged andneutral particles
- Multiparticle final state

CEBAF
Large
Acceptance
Spectrometer

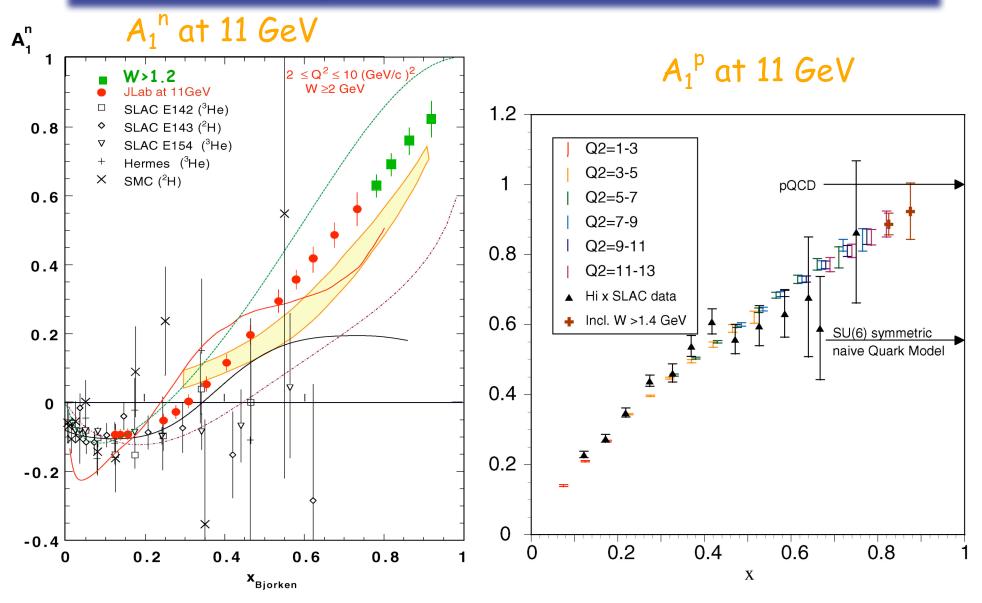
- •NH3 and ND3 targets
- Beam current 100nA

A₁^{p,d} From NH₃ and ND₃ in Hall B

V. Burkert, S. Kuhn R. Mineheart, G. Dodge et al. EG1 collaboration



What's possible with 11 GeV beam



June 16, 2006

HUGS 2006, Newport News, VA